Lecture 6. Biomass-derived porous carbon materials

Last several decades, researchers interested in carbon aerogels due to their various characteristics, such as high porosity, low density, controllable surface functional groups, etc. Moreover, they are the lightest materials in the world. Since Pekala (Pekala et al., 1990) developed the first resorcinol-formaldehyde carbon aerogel, Kroto et al. (Kroto et al., 1985) discovered fullerenes, the first carbon nanomaterials, than Ijima (Iijima, 1991) discovered carbon nanotubes, further Geim and Novoselov (Novoselov et al., 2004) obtained graphene, 2D nanomaterials, interest to develop carbon aerogels based on carbon nanomaterials have been increased. After these discoveries, in 2007 Bryning et al. (Bryning et al., 2007) and 2009 Wang (Wang and Ellsworth, 2009) reported carbon nanotubes-based and graphene-based carbon aerogels, respectively. In 2011 Pauzauskie (Pauzauskie et al., 2011) synthesized diamond-based carbon aerogels and later a lot of research works (Kabiri et al., 2014; Sultanov et al., 2014; Zhao et al., 2018) in this area have been published. These aerogels have good mechanical characteristics (Bryning et al., 2007), but synthesis methods of these precursors are high-cost and complicated. For instance, the synthesis of graphene by CVD method, which is a widespread method, can produce graphene with high quality, but they have very low production rates. Another method, which can be used to produce graphene is mechanical exfoliation, graphene with lower quality, but with high production rates can be obtained. Moreover, carbon nanomaterials are nonrenewable and their influence on human health has not yet been comprehensively investigated (Chen et al., 2020).

Another important type of carbon aerogels is biomass-derived carbon aerogels. This is because, unlike other types of carbon aerogels that use petroleum products as precursors, biomass-based carbon aerogels use biomass or biomass waste, so they are environmentally friendly and cost effective (Sam et al., 2020). In Table 1 carbon aerogels from different biomass precursors and their SSA and application area are collected. Wu et al. (Wu et al., 2013) obtained carbonaceous gels, including carbonaceous hydrogels and aerogels by using watermelon as raw materials. Li et al. (Li et al., 2014) prepared 3D carbon aerogels by using winter melon as the carbon aerogels are shown excellent hydrophobicity, and low density and they can be the absorption of oils and organic solvents 16-50 times their weight. Chen et al. (Chen et al., 2015) fabricated carbonaceous aerogels from natural cotton waste and used them as adsorbents for wastewater clean-up.

precursors				
Type of carbon	Raw material	SSA, m^2/g	Application	Ref.
material				
Carbon aerogels	Natural cotton	1160	Adsorbents for wastewater	(Chen et al.,
	waste		clean-up	2015)
Carbon aerogels	Pomelo peel	466.0-759.7	Absorbent for removal of	(Zhu et al.,
			organic pollutants/oils	2017)
Carbon aerogels	Cabbage	536	For supercapacitors and	(Cai et al.,
	leaves waste		oil/water separation	2018)
Carbon aerogels	Durian shell	735	For removal of organic	(Wang et
			pollutants	al., 2017)
Carbon aerogels	Cocoon	714	As efficient catalyst for the	(Li et al.,
			oxygen reduction reaction	2018)
			in alkaline medium	
Carbon aerogels	WTP-PVA	1384	Adsorbent, catalyst	(Vazhayal
			supports and in energy	et al., 2020)
			storage devices	

Table 1. Comparison of S_{BET} and application area of carbon aerogels from different biomass precursors

Carbon aerogels	Wood	1124	For pressure sensing and	(Chen et al.,
			energy storage	2020)
Carbon aerogels	Cellulose	-	For adsorption of diesel oil	(Yang et al.,
				2021)
N self-doped	Chitosan	1480	For high-performance	(E et al.,
carbon aerogel			supercapacitors	2021)
N-O-P co-doped	Abundant	1648.91	For high-performance	(Zhou et al.,
carbon aerogel	radish		supercapacitors	2021)
A N-doped	Cellulose	1196	For high-performance	(K. Zhao et
carbon aerogel			supercapacitors	al., 2022)
ALC	Sugarcane	390	Sensor, energy conversion	(Li et al.,
			and storage, and EMI	2015)
			shielding	
HCFSs	Catkins	438	Absorbent for oils and	(Zang et al.,
			organic solvents	2016)

Literatures

1. Lesbayev B., Auyelkhankyzy M, Ustayeva G., Yeleuov M., Rakhymzhan N., Maltay A., Maral Ye. (2023) Recent advances: Biomass-derived porous carbon materials. South African Journal of Chemical Engineering 43:327–336. DOI:10.1016/j.sajce.2022.11.012.

2. Lesbayev B., Auyelkhankyzy M., Ustayeva G., Yeleuov M., Rakhymzhan N., Maral Y., Tolynbekov A. (2023) Modification of Biomass-Derived Nanoporous Carbon with Nickel Oxide Nanoparticles for Supercapacitor Application, Journal of Composites Science, 7:20, doi.org/10.3390/jcs7010020